$$Minimum of f(x) = \frac{1}{x} + x$$

Problem: Use AM-GM Inequality to show that Minimum of $f(x) = \frac{1}{x} + x$ is 2.

Solution:

The inequality is true for non-negative values of x. By using AM-GM inequality we have,

$$\frac{1}{2} \left(\frac{1}{x} + x \right) \ge \left(\frac{1}{x} \cdot x \right)^{\frac{1}{2}}$$

$$\frac{1}{x} + x \ge 2(1) = 2$$

So,
$$f(x) \ge 2$$

This implies that for positive values of x, the minimum value of f(x) is 2.

This occurs when $\frac{1}{x} = x$ or x = 1.

The graph below verifies that for positive values of x, the minimum point is (1,2).

